The exponential family

Introduction of exponential family

The exponential family

p(y;η)=b(y)exp(ηTT(y)α(η))p(y;\eta) = b(y) exp(\eta^T T(y) - \alpha(\eta))

where

  • η\eta is natural parameter
  • T(y)T(y) is sufficient statistic
  • α(η)\alpha(\eta) is log partition function

If T(y)=yT(y) = y, then we want to know E(yx)E(y|x). Hence the expected outcome y=E(yx)=h(x)y=E(y|x)=h(x)

Gaussian distribution

p(y,μ)=12πexp((yμ)22)=12πexp(12y2+yμ12μ2)=12πexp(12y2)exp(yμ12μ2)\begin{aligned} p(y,\mu)&=\frac{1}{\sqrt{2\pi}}exp(-\frac{(y-\mu)^2}{2}) \\ &= \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}y^2+y\mu -\frac{1}{2}\mu ^2) \\ &= \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}y^2)exp(y\mu-\frac{1}{2}\mu ^2) \end{aligned}

Hence

b(y)=12πexp(12y2)η=μT(μ)=yα=12μ2\begin{aligned} b(y)&=\frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}y^2) \\ \eta&=\mu \\ T(\mu) &= y \\ \alpha &= \frac{1}{2}\mu^2 \end{aligned}

Author: shixuan liu
Link: http://tedlsx.github.io/2019/08/06/exp-family/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Donate
  • Wechat
  • Alipay

Comment