Introduction of exponential family
The exponential family
p(y;η)=b(y)exp(ηTT(y)−α(η))
where
- η is natural parameter
- T(y) is sufficient statistic
- α(η) is log partition function
If T(y)=y, then we want to know E(y∣x). Hence the expected outcome y=E(y∣x)=h(x)
Gaussian distribution
p(y,μ)=2π1exp(−2(y−μ)2)=2π1exp(−21y2+yμ−21μ2)=2π1exp(−21y2)exp(yμ−21μ2)
Hence
b(y)ηT(μ)α=2π1exp(−21y2)=μ=y=21μ2